Design Considerations

12
Dec

2017

Is the Dresden Suspended Railway the World’s Most Fascinating (or Unusual) Cable Car System? 

 

Is it a monorail? AGT? Or an upside down funicular? Image by Hans Rudolf Stoll.

At the expense of sounding overly dramatic, the Dresden Suspended Railway may very well be the world’s most fascinating or perhaps unusual urban transport line. Built in 1901 on the slopes of the River Elbe, the 273m long system takes 4.5 minutes to climb 84m from the lower district of Loschwitz to the top of Oberloschwitz.

At the onset, the system looks a lot like a suspended monorail travelling on rails. However, the vehicles actually don’t contain any onboard motors for propulsion, rather, the vehicles are attached to and propelled by a cable. Operationally, it functions like an aerial tram or a funicular which have two counterbalanced vehicles shuttling back and forth.

In the transit planning world where practitioners and enthusiasts are often fixated with organizing technologies (e.g. buses, LRT, HRT/subways, monorails, CPT and etc.) into specific typologies, the Dresden Suspended Railway is perhaps one of those unique systems that slips conventional categories.

Dresden Suspended Railway travelling up towards Oberloschwitz. At the upper terminal, passengers can make their way up to the building’s roof and take in spectacular views of the City.  A cafe and museum is also available at the top. Image by Herbert Frank.

Unlike most aerial systems which travel in straight lines, the Dresden system travels with a slight curvature near the bottom terminal. Image by Kora27.

So from a definition standpoint, where does the Dresden Suspended Railway fit in?

From online sources, it seems to be placed somewhat correctly/incorrectly in articles related to “Suspended Railways“. But by general standards of what it means to be a “Cable Propelled Transit (CPT)” system, it wouldn’t be inaccurate to classify it as part of the CPT family. Perhaps a more accurate term is “Suspended Cable Train (SCT)”.

However, SCT isn’t likely to catch on anytime soon since Dresden, Memphis and Hiroshima are the only cities in the world with these contraptions.

But perhaps it doesn’t really matter what the Dresden system is. Rather if we analyze it purely from a performance perspective, it appears that the system continues to play an important transport function. Today, the city-operated system still attracts 300,000 riders annually despite it being over a 100 years old and having a higher fare than the rest of the transit network (€4 on cable car vs €2.30 on regular transit).

Chances are, given its uniqueness and heritage status, many of its riders will be of the recreational type. While some transit purists may disregard the system as merely a “toy for tourists“, it might be easy to forget that tourist riders are an integral part of a successful public transport systems.

In fact, many of the world’s most respected transit agencies build and operate recreational transport systems to complement their transport network (e.g. MTR’s Ngong Ping 360, TfL’s Emirates Air Line, and TMB’s Teleferic de Montjuic). Arguably, if a transit system lacked tourists, it’s likely a sign that it isn’t very attractive nor useful.

From a transit technology perspective, perhaps what is most exciting about Dresden is related to the precedence that it can set. While fusing cable-driven systems with suspended rails may not be appropriate for the majority of urban transport applications, chances are, there will be scenarios where this hybrid technology should be subject to further consideration and scrutiny. After all, transit isn’t always purely about function.



Want more? Purchase Cable Car Confidential: The Essential Guide to Cable Cars, Urban Gondolas & Cable Propelled Transit and start learning about the world's fastest growing transportation technologies.

11
Dec

2017

Tower Design Lesson from Disney World Skyway

Walt Disney World Resort recently released new details about their Skyliner transportation system (here, here and here) — a topic I’ve been researching in hopes of a more fulsome analysis in the near future. During that research, however, I came upon something rather arcane that to a lot of people is probably rather mundane. But, trust me, it isn’t.

During our research about the Skyliner, I came upon this image of Disney World’s gondola, nicknamed the “skyway.”

Image from PlanningforDisney.com

What do you notice in this image?

Here’s what I notice — A series of benches. A flowerbed. A fountain. A clock. And a whole lot of people congregating around the base of the gondola tower.

Simply plunking a gondola tower into the middle of the public realm would be a non-start for a company as meticulous as Disney. Instead of seeing the tower as a liability, the staff who designed this system chose to turn the base of the tower into a focal point within their space.

We oftentimes hear clients complain about the towers. That they are unsightly and ugly. Which is, to some extent, true. But so is a lot of urban infrastructure. What’s interesting here is that system designers paid no attention to the tower itself. The towers pictured are off-the-shelf components of their time and era and it would be hard to imagine any special design or customization being put into their fabrication.

Instead, designers focused on the seam where the tower meets the street. That, after all, is where the majority of people will actually interact with the tower. It’s an elegant solution that costs thousands of dollars rather than the millions of dollars some people spend on customized towers (Portland and London, for example).

From the myriad of images of this system online, it’s clear that not all of the tower bases were given such a treatment with the answer as to why not likely lost to time.

As cable propelled transit systems slowly penetrate into urban realms, there will be increased scrutiny as to their impact on the surrounding public space and urban fabric. That’s why this precedent is so important. The Disney skyway shows in great detail how simply re-imagining this “ugly” piece of infrastructure can turn it into a focal point for public recreation. Urban gondola planners should take note.



Want more? Purchase Cable Car Confidential: The Essential Guide to Cable Cars, Urban Gondolas & Cable Propelled Transit and start learning about the world's fastest growing transportation technologies.

05
May

2017

Special Gondola Design: Cantilevered Towers

Cantilevered tower design maximizes use of airspace above existing roads. Image from Google Streetview.

Thanks to our readers and the internet, documenting unique designs for Cable Propelled Transit (CPT) systems are now easier than ever before. Notable examples that immediately come to mind include the Finnish Sauna Gondola, the Singaporean Skyscraper Station and the Chinese Arching Roadway Tower.

Unfortunately, it seems that lax record keeping in the industry has meant that many unique ropeway designs created in the past have been largely lost and/or just simply forgotten.

Most recently, reader Conrad W (re)discovered and shared with us a fascinating cantilevered tower design on the Poços de Caldas Teleférico in Brazil. Having reviewed countless urban gondola proposals in the past, we know that this tower design has been theoretically discussed but this is the first instance where we’ve seen its implementation in real life — and it is for this exact reason why this discovery is exciting.

Tower designs examined for the San Diego Bay to Balboa Park Skyway. Screenshot from Feasibility Report.

For those working in the city-building industry, theoretical design solutions are great for sparking lively conversations but unfortunately, most cities are incredibly risk-averse when it comes to adopting new forms of infrastructure. Having real world examples allows project proponents to demonstrate that a design is tested and proven.

For urban planners and designers, this ingenious tower style provides one major advantage: it enables a cable car to follow the under-utilized airspace along an existing right of way — without the need to remove/impact road space. In an urban transport project, this advantage cannot be underestimated as many rapid transit proposals face immense backlash due to the need to take away lanes from motorists.

However, if vehicular lanes and capacity are maintained with the strategic use of cantilevered towers, the concerns of motorists can be mitigated.  Furthermore, in cities where the cost of land is high and the desire to maintain vehicular capacity is strong, this design solution could significantly increase a project’s financial and social feasibility.

While the tower design is fascinating, it should be noted that these towers are designed for a relatively old ropeway system. According to data online, the 1.5km gondola was built in 1974 and only carries 6,000 persons per month. As such, transferability from a cost and technical perspective to modern ropeway specifications is still relatively unknown at this time since no urban gondola (that we know of) is currently built with cantilevered towers.

What we do know now is that thanks to the Poços de Caldas Teleférico, there is precedence for this unique cantilevered tower solution in an urban environment.

All that’s required now is the right set of circumstances for implementation. Luckily, from the hundreds of active cable car proposals, it probably isn’t too difficult to find a city who wants to build additional transport capacity along an existing thoroughfare without removing car lanes.



Want more? Purchase Cable Car Confidential: The Essential Guide to Cable Cars, Urban Gondolas & Cable Propelled Transit and start learning about the world's fastest growing transportation technologies.

04
Jan

2017

There are no problems, only solutions

Many cities today find themselves embroiled in polarizing transport modality debates.

Other (intelligent) cities meanwhile don’t see a conflict between transit, local roads, pedestrians and highways — they simply think in 3 dimensions.

Case in point: the Kitakyushu Monorail.

Kitakyushu Monorail. Image by FlowiRawr.

Kitakyushu Monorail uses air space underneath the Kitakyushu Expressway Route 1. Image by FlowiRawr.

Thanks to reader Ben H. for sending us this awesome photo to once again demonstrate how great design can solve any challenge.

 



Want more? Purchase Cable Car Confidential: The Essential Guide to Cable Cars, Urban Gondolas & Cable Propelled Transit and start learning about the world's fastest growing transportation technologies.

08
Sep

2016

Video: Brest Cable Car Showcases World’s First Cable “Overpass” Design

After 2 months of testing, new footage of the Brest Cable Car (French: Téléphérique de Brest) has surfaced online.

The cable lift operates in an aerial tram configuration — however, unlike your typical aerial tram, the manufacturers (Bartholet) have built an incredibly unique system known as the “saut de mouton à câble” or SDMC Concept.

With this design, the two cabins operate on different track alignments, which enables the cabins to travel above and below each other as they move through the central 80m tower. This concept results in considerable space savings (i.e. smaller station footprint) as both cabins utilize the same platform.

SDMC Concept. Image from Bartholet.

SDMC Concept. Image from Bartholet.

SDMC concept in action. Image from Ouest France.

SDMC concept in action. Image from Ouest France.

In a city setting, this reduction in station widths will be particularly advantageous since urban real estate is often priced at a premium.

The cable car is scheduled to open in October 2016.



Want more? Purchase Cable Car Confidential: The Essential Guide to Cable Cars, Urban Gondolas & Cable Propelled Transit and start learning about the world's fastest growing transportation technologies.

Brest Téléphérique / Gondola / Design Considerations / Engineering
Comments Off on Video: Brest Cable Car Showcases World’s First Cable “Overpass” Design
Comments Off on Video: Brest Cable Car Showcases World’s First Cable “Overpass” Design
04
Dec

2015

“Rope Is Just Rope, Isn’t It?” (Fatzer’s Surprisingly Different Stabilo® Rope)

Stabilo rope's reliability and load capacity make it ideal for gondola, 2S and 3S cableways.

Stabilo rope’s reliability and load capacity make it ideal for MDG, BDG and 3S cableways.

Wondering whether choice of rope really matters? Look at it this way: If you were responsible for building a tram in your city, wouldn’t you want to know all you could about the track?

Awhile back, the Gondola Project posted an article about the often-overlooked issue of the weight-bearing cable or “rope” is it’s known in this, the “ropeway” industry. The gist of the story was that choosing the wrong rope, or leaving it to the last minute, can be inconvenient at best and extremely expensive or even unsafe at worst.

Today, we begin to examine Fatzer’s individual rope products, used for ropeways worldwide — this first one is Stabilo®. Fatzer ensures us that the differences between the products are subtle but important. Having produced literally thousands of miles of rope for transporting people in cable cars and chairlifts, they know what they’re talking about.

Most rope changes significantly with use, but not Stabilo. It remains, well, stable.

All ropes are made up of many wound strands of wire. Often, those strands are wound round a core of different materials. After the rope is put into use, the rope continually bends at the ropeway’s wheels. Friction from contact with the between strands of wire creates minute notches on them. The notches begin rubbing against each other, eventually breaking the wire.

Polyethylene core stabilizes movement and reduces elongation. (Photo from Fatzer.com)

Polyethylene core stabilizes movement and reduces elongation. (Photo from Fatzer.com)

Furthermore, with repeated cycles the strands quickly begin settling. Eventually they work their way into the core, changing it, narrowing its diameter and elongating the rope. The entire set of issues lessens the life expectancy of the rope.

Fatzer’s solution? Stabilize the core and prevent contact between the wire strands.

A Stabilo rope’s interior is filled with a polyethylene core rod, which is heated during the formation process. What results are compressed and minuscule layers of plastic between the strands, which are now kept separate at a uniform distance. So there’s a stable diameter at the core of the rope, for a weight-bearing cable that is less prone to stretching and, therefor, longer lasting.

The ideal applications for Stabilo ropes are continuously circling cableways, which demand longer and uninterrupted performance. All ropes stretch, though. Eventually even Stabilo requires maintenance for shortening (and ultimately replacement). Stabilo is the right choice for a ropeway that can only be halted at specified, predictable periods. Learn more here.

Materials on this page are paid for. Gondola Project (including its parent companies and its team of writers and contributors) does not explicitly or implicitly endorse third parties in exchange for advertising. Advertising does not influence editorial content, products, or services offered on Gondola Project.



Want more? Purchase Cable Car Confidential: The Essential Guide to Cable Cars, Urban Gondolas & Cable Propelled Transit and start learning about the world's fastest growing transportation technologies.

Design Considerations / Fatzer / Lessons / Technology
Comments Off on “Rope Is Just Rope, Isn’t It?” (Fatzer’s Surprisingly Different Stabilo® Rope)
Comments Off on “Rope Is Just Rope, Isn’t It?” (Fatzer’s Surprisingly Different Stabilo® Rope)
13
Oct

2015

The 10 Most Beautiful Examples of Elevated Transport Infrastructure – Part 2

As I said yesterday, elevated transport infrastructure don’t get no love.

In this, the second of two posts, we wrap up our list of the 10 most beautiful examples of elevated public transport infrastructure from around the world.

ANY CHARACTER HERE

 

5. Station Square, Forest Hills Gardens – Queens, New York

ANY CHARACTER HERE

Forest Hills Station. Image by flickr user Peter Dutton.

As one of the first stops along New York City’s Long Island Rail Road (LIRR) commuter rail system, Forest Hills station is something to behold. Or not . . .

After all, the station itself is somewhat invisible, playing second-fiddle to the rest of the square. It doesn’t announce itself the way the rest of the plaza does, but instead acts as a curious Northern gateway into the square for daily commuters. Built in 1906 for the wealthy residents of Forest Hills Gardens of Queens, New York Station Square, understands the importance of vistas and viewsheds. It harkens back to old Europe, a place where enclosed public plazas are as common as parking lots are in Texas.

Read more



Want more? Purchase Cable Car Confidential: The Essential Guide to Cable Cars, Urban Gondolas & Cable Propelled Transit and start learning about the world's fastest growing transportation technologies.

Related Posts Plugin for WordPress, Blogger...